

SETAC Europe 34th Annual Meeting, Seville, May 2024 Track: Environmental Policy, Risk Management, and Science Communication Session: Bird and Mammal Risk Assessment: Implementation of New Approaches for the Study of Higher-Level Effects in Wildlife Toxicology

A Proposal on How to Consider 'Vulnerable Species' in **Bird Focal Species Selection**

Ines Hotopp¹, <u>Anja Russ¹</u>, Benedikt Gießing¹, Christian Wolf¹, Steven Kragten², Arnd Weyers³, Marie Fan⁴, Dennis Sprenger⁵

¹ tier3 solutions, Germany; ² Syngenta Agro GmbH, Germany; ³ Bayer AG, Crop Science division; ⁴ BASF France S.A.S., France; ⁵ Corteva Agriscience, Germany

[E-mail contact: ines.hotopp@tier3.de]

Background

The revised EFSA 2023 Guidance Document for Birds and Mammals [1] emphasises vulnerability as criterion rather than prevalence for focal species (FS) selection. Weyers et al. (2022) [2] suggest to rank FS candidates according to their expected magnitude of exposure by calculating a species-specific daily dietary dose (DDD). With this, species experiencing a higher exposure would be ranked as potentially more vulnerable and are identified as candidates for focal species. The DDD is calculated using - among others - the estimated 'proportion of diet an individual obtains from the (potentially) treated crop' (PT). A real PT is assessed through a radio-tracking field study, but not for all species such field data are available. Here, the suitability of the frequency of occurrence in the surveys (FO_{survev}) conducted in each study field during FS field studies as a proxy for PT in theoretical DDD (DDD_{survev}) calculations for the purpose of ranking FS according to their potential vulnerability is investigated.

Method

Evaluation of the suitability of using FO_{survev} as proxy for PT:

- = PT/100 FIR/bodyweight RUD DDD
- $\mathsf{FO}_{\mathsf{field}}$ = percentage of investigated fields in which a species was observed
- FO_{survey} = 90% ile of the percentage of investigated surveys during which a species was recorded, excluding fields without observations
- 10 case examples of pairs of PT studies and FS studies in the same crop and BBCH stage
- statistical comparison of empirical PT values with FO_{survev} values using GLMM
- statistical comparison of DDD_{survev} and FO_{field} depending on food source for the analysis of differences between the former approach using FO_{field} [3] and the newly suggested approach using GLMMs
- differentiation between survey methods transect count and scan

Example 1: All vulnerable species likely covered by the FS selected according to the former FOfield > 20% criterion approach [3]:

	FO _{field} [%]	FO _{survey} (90 th percentile) [%]	DDD _{survey}	PT (90 th percentile consumer)
Species 1	100.00	97.04	8.19	0.35 (n=20)
Species 2	100.00	81.19	7.82	0.39 (n=20)
Species 3	75.00	61.30	6.54	0.19 (n=20)
Species 4	25.00	49.97	6.32	-
Example 2 not conside	: Specie ered by tl	s 2 identified as vu he former FO _{field} > 2	Inerable FS 20% criterio	S candidate that was n approach:
	FO _{field} [%]	FO _{survey} (90 th percentile) [%]	DDD _{survey}	(90 th percentile consumer)
Species 1	36.67	100.00	2.21	0.09 (n=20)
Species 2	16.67	86.67	2.01	-

sampling

Species 4 66.67

36.67

Species 3

100.00

1.96

1.93

100.00

1.00 (n=20)

0.77 (n=20)

Results

Comparison between PT and FO_{survev}

- positive correlation indicating potential suitability of FO_{survev} as PT proxy
- significant for transect count method (Fig. 1)
- not sufficient data points for scan sampling method
- sufficient number of surveys necessary for meaningful results

Comparison between FO_{field} and DDD_{survey}

positive correlation

Fig. 2: DDD_{survev} vs FO_{field}. Lines depict the prediction of the GLMMs, shaded areas show the upper and lower confidence limit of the prediction.

- significant for all food types and survey method combinations (Fig. 2)
- points with low FO_{field} but high DDD_{survev} indicate vulnerable species that were not considered as FS before

Fig. 1: PT vs FO_{survey}. Lines depict the prediction of the GLMM, shaded areas show the upper and lower confidence limit of the prediction.

Conclusion

The analysis suggests that FO_{survev} can be considered as a proxy for the PT during the calculation of a DDD when ranking the potential focal species, but is not a substitute for the PT in any case. FO_{survev}-values obtained based on only few surveys seem to be insufficient as a proxy for PTs in the calculation of a DDD_{survev} due to the resulting limited range of FO_{survev}-values. The number of PT values that could be assigned to FO_{survev} calculated with scan sampling data was low. This is likely the reason for the non-significance in the statistical analysis of this method. Additional data, especially for the scan sampling method would be helpful to strengthen the observed relationship. The former approach using the 20% FO_{field} cut-off criterion produces similar results to the approach introduced here using DDD_{survev} in many cases. However, compared to the focal species selected with the former approach, in some cases additional species are identified by this new approach and would need further consideration.

References

[1] EFSA (European Food Safety Authority), Aagaard A, Berny P, Chaton PF, Antia AL, McVey E, Arena M, Fait G, Ippolito A, Linguadoca A, Sharp R, Theobald A, Brock T (2023). Guidance on the risk assessment for Birds and Mammals. EFSA Journal 2023; 21(2):7790, 300 pp.

[2] Weyers A., Sprenger D & Kragten S (2022) Focus matters – Bird focal species for higher tier risk assessment. Poster at SETAC Copenhagen. [3] EFSA 2009. Guidance on Risk Assessment for Birds and Mammals on request from EFSA. EFSA Journal 7(12):1438. doi: 10.2903/j.efsa.2009.1438.

